Laws of Exponents

If we have a and b as the base and m and n as the exponents, then

Laws of ExponentsExample
\mathrm{a^m\times a^n=a^{m+n}} 7^3\times7^4=7^{3+4}=7^7
\mathrm{(a^m)^n} (7^3)^4=7^{3\times4}=7^{12}
\mathrm{\dfrac{a^m}{a^n}=a^{m-n},m>n} \dfrac{7^4}{7^3}=7^{4-3}=7^1=7
\mathrm{a^mb^m=(ab)^m} 7^34^3(7\times4)^3=28^3
\mathrm{a^0=1} 7^0=1
\mathrm{a^1=a} 7^1=7

Example:

Express 1730000000000 in exponent form.

Solution: 

In standard form, the number  1730000000000 will be written as  1.73\times10^{12}.

Example:

Express  0.000000000000073 in exponent form.

Solution:

In standard form, the number will be written as  7.3\times10^{-14}.

Scroll to Top