Choose the Correct options
0 of 30 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 30 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Average score |
|
Your score |
|
The value of \(\)\dfrac{{({{\sin }^3}Q + {{\cos }^3}Q)}}{{\sin Q + \cos Q}}[\latex]is
\(\)\begin{array}{l}\dfrac{{{{\sin }^3}Q + {{\cos }^3}Q}}{{\sin Q + \cos Q}} = \dfrac{{(\sin Q + \cos Q)({{\sin }^2}Q – \sin Q\cos Q + {{\cos }^2}Q)}}{{\sin Q + \cos Q}}\\ = {\sin ^2}Q + {\cos ^2}Q – \sin Q + \cos Q\\ = 1 – \sin Q\cos Q\end{array}[\latex]
The value of \(\){(\dfrac{{\sin 27}}{{\cos 63}})^{^2}} + {(\dfrac{{\cos 63}}{{\sin 27}})^2}[\latex]is
\(\)\begin{array}{l}{[\dfrac{{\sin (90 – 63)}}{{\cos 63}}]^2} + {[\dfrac{{\cos (90 – 27)}}{{\sin 27}}]^2}\\ = {(\dfrac{{\cos 63}}{{\cos 63}})^2} + {(\dfrac{{\sin 27}}{{\sin 27}})^2}\\ = 1 + 1 = 2\end{array}[\latex]
The value of \(\)\dfrac{{\cos (90 – Q)}}{{\sin Q}} + \dfrac{{\sin Q}}{{\cos (90 – Q)}}[\latex]
\(\)\begin{array}{l}\dfrac{{\cos (90 – Q)}}{{\sin Q}} + \dfrac{{\sin Q}}{{\cos (90 – Q)}}\\ = \dfrac{{\sin Q}}{{\sin Q}} + \dfrac{{\sin Q}}{{\sin Q}} = 1 + 1 = 2\end{array}[\latex]
The value of \(\)\dfrac{{\cos (90 – Q)\cos Q}}{{\tan Q}} + {\cos ^2}(90 – Q)[\latex]is
\(\)\begin{array}{l}\dfrac{{\cos (90 – Q)\cos Q}}{{\tan Q}} + {\cos ^2}(90 – Q)\\ = \dfrac{{\sin Q\cos Q}}{{\tan Q}} + {\sin ^2}Q\\ = {\cos ^2}Q + {\sin ^2}Q\\ = 1\end{array}[\latex]
The value of \(\){\sec ^2}42 – \cos e{c^2}48[\latex]is
\(\)\begin{array}{l}{\sec ^2}42 – \cos e{c^2}(90 – 42)\\{\sec ^2}42 – {\sec ^2}42\\ = 0\end{array}[\latex]
If (1+cosA)(1-cosA)=\(\)\dfrac{3}{4}[\latex],the value of secA is
\(\)\begin{array}{l}(1 + \cos A)(1 – \cos A) = \dfrac{3}{4}\\1 – {\cos ^2}A = \dfrac{3}{4}\\1 – \dfrac{3}{4} = {\cos ^2}A\\{\cos ^2}A = \dfrac{1}{4}\\{\sec ^2}A = \dfrac{1}{4}\\\sec A = \pm 2\end{array}[\latex]
If sin(A+B)=1and tan(A-B)=\(\)\dfrac{1}{{\sqrt 3 }}[\latex]the value of tanA+cotB is
\(\)\begin{array}{l}\sin (A + B) = 1\\ = A + B = 90\_\_\_\_1\\\tan (A – B) = \dfrac{1}{{\sqrt 3 }}\\ = A – B = 30\_\_\_\_\_\_2\end{array}[\latex]
Solving both the equations we get A=60,B=30
TanA+cotB=tan60+cot30=
\(\)\sqrt 3 + \sqrt 3 = 2\sqrt 3 [\latex]
If sin Q=x, sec Q=x ,sec Q=the value of cot Q is
\(\)\begin{array}{l}\cot Q = \dfrac{{\cos Q}}{{\sin Q}}\\\sec Q = Y\\\cos Q = \dfrac{1}{Y}\\\cot Q = \dfrac{1}{{XY}}\end{array}[\latex]
If cossecQ=\(\)\dfrac{5}{3}[\latex], the value of cosQ+tanQ is
\(\)\begin{array}{l}BC = \sqrt {25{k^2} – 9{k^2}} \\ = \sqrt {16{k^2}} \\ = 4k\\\cos Q + \tan Q = \dfrac{4}{5} + \dfrac{3}{4}\\ = \dfrac{{16 + 15}}{{20}} = \dfrac{{31}}{{20}}\end{array}[\latex]
\(\)[\latex]
The value of sin38-cos52 is
Sin38-cos52
=cos(90-38)-cos52=cos52-cos52
=0
If cosQ=\(\)\dfrac{1}{2}[\latex],the value of cosQ+secQ is
\(\)\begin{array}{l}\cos Q = \dfrac{1}{2}\\ = \sec Q = 2\\\cos Q + \sec Q = \dfrac{1}{2} + 2 = \dfrac{{1 + 4}}{2} = \dfrac{5}{2}\end{array}[\latex]
The value of \(\)3{\cot ^2} + {\sec ^2}45[\latex] is
\(\)3{(\dfrac{1}{{\sqrt 3 }})^2} + {(\sqrt 2 )^2} = 3 \times \dfrac{1}{2} + 2 = 1 + 2 = 3[\latex]
If sinA=cosA,the value of \(\)2{\tan ^2}A + {\sin ^2} + 1[\latex]is
\(\)\begin{array}{l}\sin A = \cos A\\A = 45\\2{\tan ^2}45 + {\sin ^2}45 + 1\\ = 2 \times {1^2} + (\dfrac{1}{{\sqrt 2 }}) + 1\\ = 2 + \dfrac{1}{2} + 1 = \dfrac{{4 + 1 + 2}}{2} = \dfrac{7}{2}\end{array}[\latex]
If tanQ+cotQ=2, the value of \(\)\sqrt {{{\tan }^2}Q + {{\cot }^2}Q} [\latex] is
\(\)\begin{array}{l}\tan Q + \cot Q = 2\\{\tan ^2}Q + {\cot ^2}Q + 2 = 4\\{\tan ^2}Q + {\cot ^2}Q = 2\\\sqrt {{{\tan }^2}Q + {{\cot }^2}Q} = \sqrt 2 \end{array}[\latex]
If tan(A-B) and tan(A+B)=\(\)\sqrt 3 [\latex]
\(\)\begin{array}{l}\tan (A – B) = \dfrac{1}{{\sqrt 3 }}\\ = A – B = 30\_\_\_1\\\tan (A + B) = \sqrt 3 \\ = A + D = 60\_\_\_2\end{array}[\latex]
Solving both the equations we get
A=45,B=15
The value of \(\)\dfrac{{3\tan 25.\tan 40.\tan 50.\tan 65 – \dfrac{1}{2}{{\tan }^2}60}}{{4({{\cos }^2}29 + {{\cos }^2}61)}}[\latex]
\(\)\begin{array}{l}\dfrac{{3\tan 25\tan 40\tan (90 – 40)\tan (90 – 25) – \dfrac{1}{2} \times {{(\sqrt 3 )}^2}}}{{4[{{\cos }^2}29 + {{\cos }^2}(90 – 29)]}}\\\dfrac{{3\tan 25\tan 40\tan \cot 40\cot 25{{(\sqrt 3 )}^2}}}{{4[{{\cos }^2}29 + {{\sin }^2}29)]}}\\\dfrac{{3 – \dfrac{3}{2}}}{4} = \dfrac{{\dfrac{3}{2}}}{4} = \dfrac{3}{8}\end{array}[\latex]
The value of
\(\)\dfrac{{4{{\cot }^2}60 + {{\sec }^2}30 – 2{{\sin }^2}45}}{{{{\sin }^2}60 + {{\cos }^2}45}}[\latex]
\(\)\begin{array}{l}\dfrac{{4 \times {{(\dfrac{1}{{\sqrt 3 }})}^2} + {{(\dfrac{2}{{\sqrt 3 }})}^2} – 2 \times {{(\dfrac{1}{{\sqrt 2 }})}^2}}}{{{{(\dfrac{{\sqrt 3 }}{2})}^2} + {{(\dfrac{1}{{\sqrt 2 }})}^2}}}\\\dfrac{{\dfrac{4}{3} + \dfrac{4}{3} – 1}}{{\dfrac{3}{4} + \dfrac{1}{2}}} = \dfrac{{\dfrac{8}{3} – 1}}{{\dfrac{{3 + 2}}{4}}} = \dfrac{5}{3} \times \dfrac{4}{5} = \dfrac{4}{3}\end{array}[\latex]
If sec + tanQ=P, the value of cosecQ is
\(\)\begin{array}{l}\sec Q + \tan Q = ?\_\_\_\_1\\{\sec ^2}Q – {\tan ^2}Q = 1\\(\sec Q + \tan Q)(\sec Q – \tan Q) = 1\\P(\sec Q – \tan Q) = 1\\\sec Q – \tan Q = \dfrac{1}{P}\_\_\_\_\_2\\Adding1and2\\2\sec Q = P + \dfrac{1}{2}\\\sec Q = \dfrac{{{P^2} + 1}}{{2P}}\\Subtracting1and2\\weget,\\2\tan Q = p – \dfrac{1}{p} = \tan Q = \dfrac{{{p^2} – 1}}{{2p}}\\\dfrac{{\sec Q}}{{\tan Q}} = \dfrac{{\dfrac{{{P^2} – 1}}{{2p}}}}{{\dfrac{{{p^2} – 1}}{{2p}}}} = \dfrac{{\dfrac{1}{{\cos Q}}}}{{\dfrac{{\sin Q}}{{\cos Q}}}} = \dfrac{{{P^2} + 1}}{{{P^2} – 1}}\\ = \dfrac{1}{{\sin Q}} = \dfrac{{{P^2} + 1}}{{{P^2} – 1}}\\ = \cos ecQ = \dfrac{{{P^2} + 1}}{{{P^2} – 1}}\end{array}[\latex]
The value of \(\)\dfrac{4}{{{{\cot }^2}30}} + \dfrac{1}{{{{\sin }^2}60}} – {\cos ^2}45[\latex]is
\(\)\begin{array}{l}\dfrac{4}{{(\sqrt {3)} }} + \dfrac{1}{{{{(\dfrac{1}{{\sqrt 3 }})}^2}}} – {(\dfrac{1}{{\sqrt 2 }})^{^2}}\\ = \dfrac{4}{3} + \dfrac{4}{3} – \dfrac{1}{2} = \dfrac{{13}}{6}\end{array}[\latex]
The value of \(\)4({\sin ^4}30 + {\cos ^4}60) – 3({\cos ^2}45 – {\sin ^2}90)[\latex]is
\(\)\begin{array}{l}4[{(\dfrac{1}{2})^4} + {(\dfrac{1}{2})^4}] – 3[{(\dfrac{1}{{\sqrt 2 }})^2} – 1]\\ = 4[\dfrac{1}{{16}} + \dfrac{1}{{16}}] – 3[\dfrac{1}{2} – 1]\\ = (4 \times \dfrac{2}{{16}}) – 3( – \dfrac{1}{2})\\ = \dfrac{1}{2} + \dfrac{3}{2} = 2\end{array}[\latex]
The value of 2tan\(\)2{\tan ^3}45 + \cos [\latex]is
\(\)\begin{array}{l}2 \times {(1)^2}{(\dfrac{{\sqrt 3 }}{2})^2} – {(\dfrac{{\sqrt 3 }}{2})^2}\\ = 2 + 0 = 2\end{array}[\latex]
The value of tan45 tan23tan42tan67 is
\(\)\begin{array}{l}\tan (90 – 42)\tan (90 – 67)\tan 42\tan 67\\ = \cot 42\cot 67\tan 42\tan 67\\ = (\cot 42\tan 42)(\cot 67\tan 67)\\ = 1 \times 1 = 1\end{array}[\latex]
If tan2A=cot (A-18), where 2A is an acute angle. The value of A is
\(\)\begin{array}{l}\tan 2A = \cot (A – 18)\\Also,\\\tan 2A = \cot (90 – 2A)\\So,\\\cot (90 – 2A) = \cot (A – 18)\\90 – 2A = A – 18\\A = \dfrac{{108}}{3} = 36\end{array}[\latex]
The value of \(\)\dfrac{{{{\sec }^2}Q – 1}}{{{{\tan }^2}Q}}[\latex] is
\(\)\dfrac{{{{\sec }^2} – 1}}{{{{\tan }^2}Q}} = \dfrac{{{{\tan }^2}Q}}{{{{\tan }^2}Q}} = 1[\latex]
The value of \(\)\sqrt {\dfrac{{1 + \cos Q}}{{1 – \cos Q}}} + \sqrt {\dfrac{{1 – \cos Q}}{{1 + \cos Q}}} [\latex] is
\(\)\begin{array}{l}\sqrt {\dfrac{{(1 + \cos Q)(1 + \cos Q)}}{{(1 – \cos Q)(1 + \cos Q)}}} + \sqrt {\dfrac{{(1 – \cos Q)(1 – \cos Q)}}{{(1 + \cos Q)(1 – \cos Q)}}} \\ = \sqrt {\dfrac{{{{(1 + \cos Q)}^2}}}{{1 – {{\cos }^2}}}} + \sqrt {\dfrac{{{{(1 – \cos Q)}^2}}}{{1 – {{\cos }^2}Q}}} \\ = \dfrac{{1 + \cos Q}}{{\sin Q}} + \dfrac{{1 – \cos Q}}{{{\mathop{\rm Sin}\nolimits} Q}}\\ = \dfrac{{1 + \cos Q + 1 – \cos Q}}{{\sin Q}}\\ = 2\cos ecQ\end{array}[\latex]
If \(\)\tan Q = \dfrac{a}{b}[\latex], the value of \(\)\dfrac{{a\sin Q – b\cos Q}}{{a\sin Q + b\cos Q}}[\latex] is
\(\)\begin{array}{l}\dfrac{{a\dfrac{{\sin Q}}{{\cos Q}} – b\dfrac{{\cos Q}}{{\cos Q}}}}{{a\dfrac{{\sin Q}}{{\cos Q}} + b\dfrac{{\cos Q}}{{\cos Q}}}} = \dfrac{{a \times \dfrac{a}{b} – b}}{{a \times \dfrac{a}{b} + b}}\\ = \dfrac{{\dfrac{{{a^2}}}{b} – b}}{{\dfrac{{{a^2}}}{b} + b}}\\ = \dfrac{{{a^2} – {b^2}}}{{{a^2} + {b^2}}}\end{array}[\latex]
If \(\)\tan Q = \dfrac{X}{Y}[\latex], the value of sinQ is
\(\)\begin{array}{l}\tan Q = \dfrac{X}{Y} \Rightarrow CotQ = \dfrac{y}{x}\\\cos ecQ = \sqrt {1 + (\dfrac{Y}{X}} {)^2} = \dfrac{{\sqrt {{X^2} + {Y^2}} }}{X}\\So,\sin Q = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}\end{array}[\latex]
If \(\)\sin A + {\sin ^2}A = 1[\latex], the value of \(\){\cos ^2}A + {\cos ^4}A[\latex] is
\(\)\begin{array}{l}\sin A = 1 – {\sin ^2}A = {\cos ^2}A\\{\cos ^2}A + {\cos ^4}A = {\cos ^2}A + {\sin ^2}A\\ = 1\end{array}[\latex]
If \(\)\dfrac{{\sin Q + \cos Q}}{{\sin Q – \cos Q}} = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 – 1}}[\latex], the value of acute angle Q is
\(\)\begin{array}{l}\dfrac{{1 + \dfrac{{\cos Q}}{{\sin Q}}}}{{1 – \dfrac{{\cos Q}}{{\sin Q}}}} = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 – \dfrac{1}{{\sqrt 3 }}}}\\ = \dfrac{{1 + \cot Q}}{{1 – \cot Q}} = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 – \dfrac{1}{{\sqrt 3 }}}}\\ = \cot Q = \dfrac{1}{{\sqrt 3 }}\\\cot = 60\\Q = 60\end{array}[\latex]
\(\)\dfrac{1}{{1 + \sin Q}} + \dfrac{1}{{1 – \sin Q}}[\latex]=
\(\)\dfrac{{1 – \sin Q + 1 + \sin Q}}{{1 – {{\sin }^2}Q}} = \dfrac{2}{{{{\cos }^2}Q}} = 2{\sec ^2}Q[\latex]